Logo

Garden City
Plainview
Listen to The Optimal Health Program on WABC radio (770 on the AM dial) on Saturday mornings from 8-9AM and Sunday evenings from 6-7PM
Air Pollution and Heart Rate Variability

Background

Outdoor air pollution and lead exposure can disturb cardiac autonomic function, but the effects of both these exposures together have not been studied.

Methods

We examined whether higher cumulative lead exposures, as measured by bone lead, modified cross-sectional associations between air pollution and heart rate variability among 384 elderly men from the Normative Aging Study. We used linear regression, controlling for clinical, demographic, and environmental covariates.

Results

We found graded, significant reductions in both high-frequency and low-frequency powers of heart rate variability in relation to ozone and sulfate across the quartiles of tibia lead. Interquartile range increases in ozone and sulfate were associated respectively, with 38% decrease (95% confidence interval = -54.6% to -14.9%) and 22% decrease (-40.4% to 1.6%) in high frequency, and 38% decrease (-51.9% to -20.4%) and 12% decrease (-28.6% to 9.3%) in low frequency, in the highest quartile of tibia lead after controlling for potential confounders. We observed similar but weaker effect modification by tibia lead adjusted for education and cumulative traffic (residuals of the regression of tibia lead on education and cumulative traffic). Patella lead modified only the ozone effect on heart rate variability.

Conclusions

People with long-term exposure to higher levels of lead may be more sensitive to cardiac autonomic dysfunction on high air pollution days. Efforts to understand how environmental exposures affect the health of an aging population should consider both current levels of pollution and history of lead exposure as susceptibility factors.