SERVICES*

Close-up TV News - Prolotheray lecture

Reversing Hypertension

Heavy Metals and all diseases

Close-Up TV News - Dr. Calapai's approach

News 12 Interview: Parkinson’s Disease, Glutathione and Chelation Therapy

News 12 Interview: Platelet-rich plasma therapy

Prolotherapy Interview News 12

News 12 Interview: Diabetes and Weight Loss
Vitamin C Pharmacokinetics: Implications for Oral and Intravenous Use *

Background: Vitamin C at high concentrations is toxic to cancer cells in vitro. Early clinical studies of vitamin C in patients with terminal cancer suggested clinical benefit, but 2 double-blind, placebo-controlled trials showed none. However, these studies used different routes of administration.

Objective: To determine whether plasma vitamin C concentrations vary substantially with the route of administration.

Design: Dose concentration studies and pharmacokinetic modeling.

Setting: Academic medical center.

Participants: 17 healthy hospitalized volunteers.

Measurements: Vitamin C plasma and urine concentrations were measured after administration of oral and intravenous doses at a dose range of 0.015 to 1.25 g, and plasma concentrations were calculated for a dose range of 1 to 100 g.

Results: Peak plasma vitamin C concentrations were higher after administration of intravenous doses than after administration of oral doses (P < 0.001), and the difference increased according to dose. Vitamin C at a dose of 1.25 g administered orally produced mean (±sd) peak plasma concentrations of 134.8 ± 20.6 µmol/L compared with 885 ± 201.2 µmol/L for intravenous administration. For the maximum tolerated oral dose of 3 g every 4 hours, pharmacokinetic modeling predicted peak plasma vitamin C concentrations of 220 µmol/L and 13 400 µmol/L for a 50-g intravenous dose. Peak predicted urine concentrations of vitamin C from intravenous administration were 140-fold higher than those from maximum oral doses.

Limitations: Patient data are not available to confirm pharmacokinetic modeling at high doses and in patients with cancer.

Conclusions: Oral vitamin C produces plasma concentrations that are tightly controlled. Only intravenous administration of vitamin C produces high plasma and urine concentrations that might have antitumor activity. Because efficacy of vitamin C treatment cannot be judged from clinical trials that use only oral dosing, the role of vitamin C in cancer treatment should be reevaluated.

* Legal Disclaimer: Chelation and Hyperbaric Therapy, Stem Cell Therapy, and other treatments and modalities mentioned or referred to in this web site are medical techniques that may or may not be considered “mainstream”. As with any medical treatment, results will vary among individuals, and there is no implication or guarantee that you will heal or achieve the same outcome as patients herein.

As with any procedure, there could be pain or other substantial risks involved. These concerns should be discussed with your health care provider prior to any treatment so that you have proper informed consent and understand that there are no guarantees to healing.

THE INFORMATION IN THIS WEBSITE IS OFFERED FOR GENERAL EDUCATIONAL PURPOSES ONLY AND DOES NOT IMPLY OR GIVE MEDICAL ADVICE. No Doctor/Patient relationship shall be deemed to have arisen simply by reading the information contained on these pages, and you should consult with your personal physician/care giver regarding your medical treatment before undergoing any sort of treatment or therapy.

Published on 02-06-2007