Close-up TV News - Prolotheray lecture

Reversing Hypertension

Heavy Metals and all diseases

Close-Up TV News - Dr. Calapai's approach

News 12 Interview: Parkinson’s Disease, Glutathione and Chelation Therapy

News 12 Interview: Platelet-rich plasma therapy

Prolotherapy Interview News 12

News 12 Interview: Diabetes and Weight Loss
Stem Cells and Development *

Adipose-derived stem cells (ASCs) can alleviate acute kidney injury and promote kidney cell regeneration and repair. To investigate the role of ASCs in diabetic nephropathy (DN), Sprague-Dawley rats were made diabetic by intraperitoneal injection of streptozotocin (STZ) after uninephrectomy. After 12 weeks, proteinuria was well established. Five times of 5×106 human ASCs repeatedly injected through a tail vein at 4 weekly intervals. A reduction in proteinuria was not observed in diabetic rats until 24 weeks. However, urinary protein excretion was significantly suppressed at 28 weeks and persisted up to 32 weeks after STZ treatment. ASC treatment significantly attenuated glomerulus hypertrophy and tubular interstitial injury, and led to the downregulation of WT-1 and synaptopodin expression. CFSE labeled ASCs were injected into DN rats via the tail vein. Within 24 h after injection, the cells were detected in lung, spleen, and peritubular regions, but rarely in pancreas. Human Alu gene expression was detected in lung and spleen up to 4 weeks after ASCs injection. ASC treatment did not improve hyperglycemia or pancreatic damage. In vitro, recombinant human glial cell line–derived neurotrophic factor (GDNF) prevented podocyte injury by high glucose similarly to ASC-conditioned medium. After blocking GDNF in ASC-CM with neutralizing antibody, the therapeutic effect of ASC-CM was significantly decreased. ASCs cocultured with podocytes restored the downregulation of synaptopodin expression, which was weakened by GDNF-RNA interfering. These findings indicate that repeated intravenous ASC can reduce diabetic kidney damage in rats even at the progressive stage, and promote podocyte recovery via GDNF secretion.

* Legal Disclaimer: Chelation and Hyperbaric Therapy, Stem Cell Therapy, and other treatments and modalities mentioned or referred to in this web site are medical techniques that may or may not be considered “mainstream”. As with any medical treatment, results will vary among individuals, and there is no implication or guarantee that you will heal or achieve the same outcome as patients herein.

As with any procedure, there could be pain or other substantial risks involved. These concerns should be discussed with your health care provider prior to any treatment so that you have proper informed consent and understand that there are no guarantees to healing.

THE INFORMATION IN THIS WEBSITE IS OFFERED FOR GENERAL EDUCATIONAL PURPOSES ONLY AND DOES NOT IMPLY OR GIVE MEDICAL ADVICE. No Doctor/Patient relationship shall be deemed to have arisen simply by reading the information contained on these pages, and you should consult with your personal physician/care giver regarding your medical treatment before undergoing any sort of treatment or therapy.

Published on 01-25-2016
Authors: Li Zhang, Kanghua Li, Xiangfei Liu, Diangeng Li, Congjuan Luo, Bo Fu, Shaoyuan Cui, Fei Zhu, Robert Chunhua Zhao, and Xiangmei Chen
Source: Stem Cells and Development