SERVICES*

Close-up TV News - Prolotheray lecture

Reversing Hypertension

Heavy Metals and all diseases

Close-Up TV News - Dr. Calapai's approach

News 12 Interview: Parkinson’s Disease, Glutathione and Chelation Therapy

News 12 Interview: Platelet-rich plasma therapy

Prolotherapy Interview News 12

News 12 Interview: Diabetes and Weight Loss
Stem Cell Therapy Ameliorates Bladder Dysfunction in an Animal Model of Parkinson Disease *

Purpose

Different cell based therapies have been tested, focusing on motor function. We evaluated the effect of human amniotic fluid stem cells and bone marrow derived mesenchymal stem cells (ALLCELLS, Emeryville, California) on bladder dysfunction in a rat model of Parkinson disease.

Material and Methods

A nigrostriatal lesion was induced by 6-hydroxydopamine in 96 athymic nude female rats divided into 3 treatment groups. After 2 weeks the groups were injected with human amniotic fluid stem cells, bone marrow derived mesenchymal stem cells and vehicle for sham treatment, respectively. At 3, 7, 14 and 28 days the bladder function of 8 rats per group was analyzed by conscious cystometry. Brains were extracted for immunostaining.

Results

The nigrostriatal lesion caused bladder dysfunction, which was consistent in sham treated animals throughout the study. Several cystometric parameters improved 14 days after human amniotic fluid stem cell or bone marrow derived mesenchymal stem cell injection, concomitant with the presence of human stem cells in the brain. At 14 days only a few cells were observed in a more caudal and lateral position. At 28 days the functional improvement subsided and human stem cells were no longer seen. Human stem cell injection improved the survival of dopaminergic neurons until 14 days. Human stem cells expressed superoxide dismutase-2 and seemed to modulate the expression of interleukin-6 and glial cell-derived neurotrophic factor by host cells.

Conclusions

Cell therapy with human amniotic fluid stem cells and bone marrow derived mesenchymal stem cells temporarily ameliorated bladder dysfunction in a Parkinson disease model. In contrast to integration, cells may act on the injured environment via cell signaling.

URL: http://www.sciencedirect.com/science/article/pii/S0022534711057363

* Legal Disclaimer: Chelation and Hyperbaric Therapy, Stem Cell Therapy, and other treatments and modalities mentioned or referred to in this web site are medical techniques that may or may not be considered “mainstream”. As with any medical treatment, results will vary among individuals, and there is no implication or guarantee that you will heal or achieve the same outcome as patients herein.

As with any procedure, there could be pain or other substantial risks involved. These concerns should be discussed with your health care provider prior to any treatment so that you have proper informed consent and understand that there are no guarantees to healing.

THE INFORMATION IN THIS WEBSITE IS OFFERED FOR GENERAL EDUCATIONAL PURPOSES ONLY AND DOES NOT IMPLY OR GIVE MEDICAL ADVICE. No Doctor/Patient relationship shall be deemed to have arisen simply by reading the information contained on these pages, and you should consult with your personal physician/care giver regarding your medical treatment before undergoing any sort of treatment or therapy.

Published on 08-22-2014