SERVICES*

Close-up TV News - Prolotheray lecture

Reversing Hypertension

Heavy Metals and all diseases

Close-Up TV News - Dr. Calapai's approach

News 12 Interview: Parkinson’s Disease, Glutathione and Chelation Therapy

News 12 Interview: Platelet-rich plasma therapy

Prolotherapy Interview News 12

News 12 Interview: Diabetes and Weight Loss
Short-term secondhand smoke exposure decreases heart rate variability and increases arrhythmia susceptibility in mice *

Exposure to secondhand smoke (SHS), a major indoor air pollutant, is linked to increased cardiovascular morbidity and mortality, including cardiac arrhythmias. However, the mechanisms underlying the epidemiological findings are not well understood. Impaired cardiac autonomic function, indexed by reduced heart rate variability (HRV), may represent an underlying cause. The present study takes advantage of well-defined short-term SHS exposure (3 days, 6 h/day) on HRV and the susceptibility to arrhythmia in mice. With the use of electrocardiograph telemetry recordings in conscious mice, HRV parameters in the time domain were measured during the night after each day of exposure and 24 h after 3 days of exposure to either SHS or filtered air. The susceptibility to arrhythmia was determined after 3 days of exposure. Exposure to a low concentration of SHS [total suspended particle (TSP), 2.4 ± 3.2; and nicotine, 0.3 ± 0.1 mg/m3] had no significant effect on HRV parameters. In contrast, the exposure to a higher but still environmentally relevant concentration of SHS (TSP, 30 ± 1; and nicotine, 5 ± 1 mg/m3) significantly reduced HRV starting after the first day of exposure and continuing 24 h after the last day of exposure. Moreover, the exposed mice showed a significant increase in ventricular arrhythmia susceptibility and atrioventricular block. The data suggest that SHS exposure decreased HRV beyond the exposure period and was associated with an increase in arrhythmia susceptibility. The data provide insights into possible mechanisms underlying documented increases in cardiovascular morbidity and mortality in humans exposed to SHS.

* Legal Disclaimer: Chelation and Hyperbaric Therapy, Stem Cell Therapy, and other treatments and modalities mentioned or referred to in this web site are medical techniques that may or may not be considered “mainstream”. As with any medical treatment, results will vary among individuals, and there is no implication or guarantee that you will heal or achieve the same outcome as patients herein.

As with any procedure, there could be pain or other substantial risks involved. These concerns should be discussed with your health care provider prior to any treatment so that you have proper informed consent and understand that there are no guarantees to healing.

THE INFORMATION IN THIS WEBSITE IS OFFERED FOR GENERAL EDUCATIONAL PURPOSES ONLY AND DOES NOT IMPLY OR GIVE MEDICAL ADVICE. No Doctor/Patient relationship shall be deemed to have arisen simply by reading the information contained on these pages, and you should consult with your personal physician/care giver regarding your medical treatment before undergoing any sort of treatment or therapy.

Published on 08-18-2009
Authors: Chao-Yin Chen,1 Drin Chow,1 Nipavan Chiamvimonvat,2,4 Kathryn A. Glatter,2 Ning Li,2 Yuxia He,2 Kent E. Pinkerton,3 and Ann C. Bonham1
Source: First published June 13, 2008; doi:10.1152/ajpheart.91535.2007