SERVICES*

Close-up TV News - Prolotheray lecture

Reversing Hypertension

Heavy Metals and all diseases

Close-Up TV News - Dr. Calapai's approach

News 12 Interview: Parkinson’s Disease, Glutathione and Chelation Therapy

News 12 Interview: Platelet-rich plasma therapy

Prolotherapy Interview News 12

News 12 Interview: Diabetes and Weight Loss
Selective Activation of Inflammatory Pathways by Intermittent Hypoxia in Obstructive Sleep Apnea Syndrome *

Background— Obstructive sleep apnea syndrome (OSAS), characterized by intermittent hypoxia/reoxygenation (IHR), is an independent risk factor for cardiovascular disease. We investigated the underlying molecular mechanisms of this association in a translational study.
 
Methods and Results— In a novel in vitro model of IHR, we used HeLa cells transfected with reporter constructs and DNA binding assays for the master transcriptional regulators of the inflammatory and adaptive pathways (NFB and HIF-1, respectively) to investigate underlying transcriptional events initiated by repeated cell exposure to IHR. Furthermore, we prospectively studied 19 male OSAS patients (median apnea-hypopnea frequency, 48.5 episodes per hour; interquartile range [IQR], 28.5 to 72.9) and 17 matched normal control subjects. Circulating levels of the proinflammatory cytokine tumor necrosis factor- and the adaptive factor erythropoietin were assayed in all subjects at baseline and again after 6 weeks of continuous positive airway pressure therapy in patients. Full blood count was measured as part of a detailed baseline evaluation. HeLa cells exposed to IHR demonstrated selective activation of the proinflammatory transcription factor NFB (P<0.001 by ANOVA), whereas the adaptive regulator HIF-1 was not activated, as demonstrated by luciferase reporter assays and DNA binding studies. Circulating tumor necrosis factor- levels were higher in OSAS patients (2.56 pg/mL; IQR, 2.01 to 3.42 pg/mL) than in control subjects (1.25 pg/mL; IQR, 0.94 to 1.87; P<0.001) but normalized with continuous positive airway pressure therapy (1.24 pg/mL; IQR, 0.78 to 2.35 pg/mL; P=0.002). In contrast, erythropoietin levels were similar throughout. Furthermore, circulating neutrophil levels were higher in OSAS patients than in control subjects, whereas the hematocrit was unaltered.
 
Conclusions— These data demonstrate selective activation of inflammatory over adaptive pathways in IHR and OSAS, which may be an important molecular mechanism of cardiovascular disease.
 
 

* Legal Disclaimer: Chelation and Hyperbaric Therapy, Stem Cell Therapy, and other treatments and modalities mentioned or referred to in this web site are medical techniques that may or may not be considered “mainstream”. As with any medical treatment, results will vary among individuals, and there is no implication or guarantee that you will heal or achieve the same outcome as patients herein.

As with any procedure, there could be pain or other substantial risks involved. These concerns should be discussed with your health care provider prior to any treatment so that you have proper informed consent and understand that there are no guarantees to healing.

THE INFORMATION IN THIS WEBSITE IS OFFERED FOR GENERAL EDUCATIONAL PURPOSES ONLY AND DOES NOT IMPLY OR GIVE MEDICAL ADVICE. No Doctor/Patient relationship shall be deemed to have arisen simply by reading the information contained on these pages, and you should consult with your personal physician/care giver regarding your medical treatment before undergoing any sort of treatment or therapy.

Published on 09-08-2008
Authors: Silke Ryan, MD; Cormac T. Taylor, PhD*; Walter T. McNicholas, MD*
Source: American Heart Association, Inc.