Close-up TV News - Prolotheray lecture

Reversing Hypertension

Heavy Metals and all diseases

Close-Up TV News - Dr. Calapai's approach

News 12 Interview: Parkinson’s Disease, Glutathione and Chelation Therapy

News 12 Interview: Platelet-rich plasma therapy

Prolotherapy Interview News 12

News 12 Interview: Diabetes and Weight Loss
Regulation of Cellular Thiols in Human Lymphocytes by a-Lipoic Acid: A Flow Cytometric Analysis *

Modulation of cellular thiols is an effective therapeutic strategy, particularly in the treatment of AIDS. Lipoic acid, a metabolic antioxidant, functions as a redox modulator and has proven clinically beneficial effects. It is also used as a dietary supplement. We utilized the specific capabilities of N-ethylmaleimide to block total cellular thiols, phenylarsine oxide to block vicinal dithiols, and buthionine sulfoximine to deplete cellular GSH to flow cytometrically investigate how these thiol pools are influenced by exogenous lipoate treatment. Low concentrations of lipoate and its analogue lipoamide increased Jurkat cell GSH in a dose-dependent manner between 10 (25 μM for lipoamide) to 100 μM. This was also observed in mitogenically stimulated peripheral blood lymphocytes (PBL). Studies with Jurkat cells and its Wurzburg subclone showed that lipoate dependent increase in cellular GSH was similar in CD4+ and − cells. Chronic (16 week) exposure of cells to lipoate resulted in further increase of total cellular thiols, vicinal dithiols, and GSH. High concentration (2 and 5 mM) of lipoate exhibited cell shrinkage, thiol depletion, and DNA fragmentation effects. Based on similar effects of octanoic acid, the cytotoxic effects of lipoate at high concentration could be attributed to its fatty acid structure. In certain diseases such as AIDS and cancer, elevated plasma glutamate lowers cellular GSH by inhibiting cystine uptake. Low concentrations of lipoate and lipoamide were able to bypass the adverse effect of elevated extracellular glutamate. A heterogeneity in the thiol status of PBL was observed. Lipoate, lipoamide, or N-acetylcysteine corrected the deficient thiol status of cell subpopulations. Hence, the favorable effects of low concentrations of lipoate treatment appears clinically relevant.

* Legal Disclaimer: Chelation and Hyperbaric Therapy, Stem Cell Therapy, and other treatments and modalities mentioned or referred to in this web site are medical techniques that may or may not be considered “mainstream”. As with any medical treatment, results will vary among individuals, and there is no implication or guarantee that you will heal or achieve the same outcome as patients herein.

As with any procedure, there could be pain or other substantial risks involved. These concerns should be discussed with your health care provider prior to any treatment so that you have proper informed consent and understand that there are no guarantees to healing.

THE INFORMATION IN THIS WEBSITE IS OFFERED FOR GENERAL EDUCATIONAL PURPOSES ONLY AND DOES NOT IMPLY OR GIVE MEDICAL ADVICE. No Doctor/Patient relationship shall be deemed to have arisen simply by reading the information contained on these pages, and you should consult with your personal physician/care giver regarding your medical treatment before undergoing any sort of treatment or therapy.

Published on 02-19-2010
Authors: Free Radical Biology and Medicine, Volume 22, Issue 7, 1997, Pages 1241-1257
Source: Chandan K Sen, Sashwati Roy, Derick Han and Lester Packer