SERVICES*

Close-up TV News - Prolotheray lecture

Reversing Hypertension

Heavy Metals and all diseases

Close-Up TV News - Dr. Calapai's approach

News 12 Interview: Parkinson’s Disease, Glutathione and Chelation Therapy

News 12 Interview: Platelet-rich plasma therapy

Prolotherapy Interview News 12

News 12 Interview: Diabetes and Weight Loss
Nitric oxide synthase is present in the cerebrospinal fluid of patients with active multiple sclerosis and is associated with increases in cerebrospinal fluid proteinnitrotyrosine and S-nitrosothiols and with changes in glutathione levels *

Nitric oxide (NO) is hypothesized to play a role in the immunopathogenesis of multiple sclerosis (MS). Increased levels of NO metabolites have been found in patients with MS. Peroxynitrite, generated by the reaction of NO with superoxide at sites of inflammation, is a strong oxidant capable of damaging tissues and cells. Inducible NO synthase (iNOS) is up-regulated in the CNS of animals with experimental allergic encephalomyelitis (EAE) and in patients with MS. In this study, Western blots of cerebrospinal fluid (CSF) from patients with MS demonstrated the presence of iNOS, which was absent in CSF from control subjects.
There was also NOS activity present in both MS and control CSF. Total NOS activity was increased (by 24%) in the CSF from MS patients compared with matched controls. The addition of 0.1 mM ITU (a specific iNOS inhibitor) to the samples did not change the activity of the control samples but decreased the NOS activity in the MS samples to almost control levels. The addition of 1 mM L-NMMA (a nonisoform specific NOS inhibitor), completely inhibited NOS activity in CSF from control and MS subjects. Nitrotyrosine immunostaining of CSF proteins was detectable in controls but was greatly increased in MS samples.
There were also significant increases in CSF nitrate + nitrite and oxidant-enhanced luminescence in MS samples compared with controls. Additionally, a significant decrease in reduced glutathione and significant increases in oxidized glutathione and S-nitrosothiols were found in MS samples compared with controls. Parallel changes in NO metabolites were observed in the plasma of MS patients, compared with controls, and accompanied a significant increase of reduced glutathione. These data strongly support a role for nitrosative stress in the pathogenesis of MS and indicate that therapeutic strategies focussed on decreasing production of NO by iNOS and/or scavenging peroxynitrite may be useful in alleviating the neurological impairments that occur during MS relapse.

* Legal Disclaimer: Chelation and Hyperbaric Therapy, Stem Cell Therapy, and other treatments and modalities mentioned or referred to in this web site are medical techniques that may or may not be considered “mainstream”. As with any medical treatment, results will vary among individuals, and there is no implication or guarantee that you will heal or achieve the same outcome as patients herein.

As with any procedure, there could be pain or other substantial risks involved. These concerns should be discussed with your health care provider prior to any treatment so that you have proper informed consent and understand that there are no guarantees to healing.

THE INFORMATION IN THIS WEBSITE IS OFFERED FOR GENERAL EDUCATIONAL PURPOSES ONLY AND DOES NOT IMPLY OR GIVE MEDICAL ADVICE. No Doctor/Patient relationship shall be deemed to have arisen simply by reading the information contained on these pages, and you should consult with your personal physician/care giver regarding your medical treatment before undergoing any sort of treatment or therapy.

Published on 05-26-2008