SERVICES*

Close-up TV News - Prolotheray lecture

Reversing Hypertension

Heavy Metals and all diseases

Close-Up TV News - Dr. Calapai's approach

News 12 Interview: Parkinson’s Disease, Glutathione and Chelation Therapy

News 12 Interview: Platelet-rich plasma therapy

Prolotherapy Interview News 12

News 12 Interview: Diabetes and Weight Loss
Homocysteine and the Renal Epithelial Transport and Toxicity of Inorganic Mercury: Role of Basolateral Transporter Organic Anion Transporter 1 *

The epithelial cells that line the renal proximal tubule have been shown to be the primary cellular targets where mercuric ions gain entry, accumulate, and induce pathologic effects in vivo. Recent data have implicated at least one of the organic anion transport systems in the basolateral uptake of inorganic mercury (Hg). With the use of a line of type II MDCK cells transfected stably with the human organic anion transporter 1 (hOAT1), the hypothesis that hOAT1 can transport mercuric conjugates of homocysteine (Hcy) was tested.

Indeed, MDCK II cells expressing a functional form of hOAT1 gained the ability to transport the mercuric conjugate 2-amino-4-(3-amino-3-carboxy-propylsulfanylmercuricsulfanyl) butyric acid (Hcy-S-Hg-S-Hcy). In addition, p-aminohippurate and the dicarboxylates adipate and glutarate (but not succinate or malonate) inhibited individually the uptake of Hcy-S-Hg-S-Hcy in a concentration-dependent manner. Furthermore, a direct relationship between the uptake of Hcy-S-Hg-S-Hcy and the induction of cellular injury and death was demonstrated in the hOAT1-expressing MDCK II cells only. These data represent the first line of direct evidence implicating one of the organic anion transporters in the uptake of a mercuric conjugate of Hcy in a mammalian cell. Thus, mercuric conjugates of Hcy are potential transportable substrates of OAT1. More important, the findings from the present study implicate the activity of OAT1 in the uptake and toxicity of Hg (when in the form of Hcy-S-Hg-S-Hcy in the extracellular compartment) in proximal tubular epithelial cells in vivo.

* Legal Disclaimer: Chelation and Hyperbaric Therapy, Stem Cell Therapy, and other treatments and modalities mentioned or referred to in this web site are medical techniques that may or may not be considered “mainstream”. As with any medical treatment, results will vary among individuals, and there is no implication or guarantee that you will heal or achieve the same outcome as patients herein.

As with any procedure, there could be pain or other substantial risks involved. These concerns should be discussed with your health care provider prior to any treatment so that you have proper informed consent and understand that there are no guarantees to healing.

THE INFORMATION IN THIS WEBSITE IS OFFERED FOR GENERAL EDUCATIONAL PURPOSES ONLY AND DOES NOT IMPLY OR GIVE MEDICAL ADVICE. No Doctor/Patient relationship shall be deemed to have arisen simply by reading the information contained on these pages, and you should consult with your personal physician/care giver regarding your medical treatment before undergoing any sort of treatment or therapy.

Published on 09-29-2008
Authors: Rudolfs K. Zalups and Sarfaraz Ahmad
Source: J Am Soc Nephrol 15:2023-2031, 2004