SERVICES*

Close-up TV News - Prolotheray lecture

Reversing Hypertension

Heavy Metals and all diseases

Close-Up TV News - Dr. Calapai's approach

News 12 Interview: Parkinson’s Disease, Glutathione and Chelation Therapy

News 12 Interview: Platelet-rich plasma therapy

Prolotherapy Interview News 12

News 12 Interview: Diabetes and Weight Loss
Effects of the Pineal Hormone Melatonin on the Proliferation and Morphological Characteristics of Human Breast Cancer Cells (MCF-7) in Culture *

Since melatonin, the major hormone of the pineal gland, has been shown to inhibit the growth of mammary tumors in animal models of human breast cancer, we examined the hypothesis that this indoleamine has the potential to inhibit breast cancer growth by directly inhibiting cell proliferation as exemplified by the growth of the estrogen-responsive human breast cancer cell line MCF-7 in culture. Concentrations of melatonin (10-9 m; 10-11 m), corresponding to the physiological levels present in human blood during the evening hours, significantly inhibited (P < 0.001) cell proliferation by as much as 60% to 78% as measured by either DNA content or hemocytometer cell counts. Melatonin's inhibitory effect was reversible since the logarithmic growth of MCF-7 cells was restored after melatonin-containing medium was replaced with fresh medium lacking melatonin. Not only was the inhibitory effect of melatonin absent at either pharmacological (10-7 m; 10-5 m) or subphysiological (10-15 m; 10-13 m) concentrations, but melatonin also failed to inhibit the proliferation of either human foreskin fibroblasts or the estrogen receptor-positive human endometrial cancer cell line RL95-2. Both transmission and scanning electron microscopy revealed several morphological changes that correlated with melatonin's inhibition of cell growth. After just 4 days of exposure to melatonin, MCF-7 cells exhibited reduced numbers of surface microvilli, nuclear swelling, cytoplasmic and ribosomal shedding, disruption of mitochondrial cristae, vesiculation of the smooth endoplasmic reticulum, and an increase in the numbers of autophagic vacuoles. These results support the hypothesis that melatonin, at physiological concentrations, exerts a direct but reversible, antiproliferative effect on MCF-7 cell growth in culture. This antiproliferative effect is associated with striking changes in the ultrastructural features of these cells suggestive of a sublethal but reversible cellular injury.

* Legal Disclaimer: Chelation and Hyperbaric Therapy, Stem Cell Therapy, and other treatments and modalities mentioned or referred to in this web site are medical techniques that may or may not be considered “mainstream”. As with any medical treatment, results will vary among individuals, and there is no implication or guarantee that you will heal or achieve the same outcome as patients herein.

As with any procedure, there could be pain or other substantial risks involved. These concerns should be discussed with your health care provider prior to any treatment so that you have proper informed consent and understand that there are no guarantees to healing.

THE INFORMATION IN THIS WEBSITE IS OFFERED FOR GENERAL EDUCATIONAL PURPOSES ONLY AND DOES NOT IMPLY OR GIVE MEDICAL ADVICE. No Doctor/Patient relationship shall be deemed to have arisen simply by reading the information contained on these pages, and you should consult with your personal physician/care giver regarding your medical treatment before undergoing any sort of treatment or therapy.

Published on 09-08-2010
Authors: # Steven M. Hill, and # David E. Blask
Source: Cancer Res November 1, 1988 48; 6121