Close-up TV News - Prolotheray lecture

Reversing Hypertension

Heavy Metals and all diseases

Close-Up TV News - Dr. Calapai's approach

News 12 Interview: Parkinson’s Disease, Glutathione and Chelation Therapy

News 12 Interview: Platelet-rich plasma therapy

Prolotherapy Interview News 12

News 12 Interview: Diabetes and Weight Loss
Effects of Bone Marrow Mesenchymal Stem Cells on Plasminogen Activator Inhibitor-1 and Renal Fibrosis in Rats with Diabetic Nephropathy *

Background and Aims

We undertook this study to observe the effects of bone marrow mesenchymal stem cells (BMSCs) on plasminogen activator inhibitor-1 (PAI-1) and renal fibrosis in rats with diabetic nephropathy and to explore its main mechanism.


Thirty male Sprague Dawley rats were randomly divided into three groups: normal control group (NC group, n = 10), diabetic nephropathy group (DN group, n = 10), stem cell transplantation group (MSC group, n = 10). BMSCs were transplanted to rats in the MSC group via caudal vein infusion (2 × 106/mL). At the end of 12 weeks, blood glucose, 24-h urinary protein, serum creatinine and renal mass index were measured. Morphology and collagen deposition in rat kidney were observed by HE and Masson staining, respectively. Expressions of PAI-1, transforming growth factor β1 (TGF-β1) and Smad3 in rat kidney were detected by immunohistochemistry and Western blot.


Compared with DN group, 24-h protein, serum creatinine and renal mass index decreased significantly in MSC group. No significant changes in blood glucose (p >0.05) were shown. Immunohistochemistry and Western blot showed that expressions of PAI-1, TGF-β1 and Smad3 in NC group were lower than DN group. Expression of each protein in MSC group was between two groups (p <0.05). Correlation analysis revealed that PAI-1 and TGF-β1 (r = 0.987, p <0.05) and Smad3 (r = 0.974, p <0.05) showed a significant positive correlation. TGF-β1 and Smad3 (r = 0.962, p <0.05) were positively correlated.


BMSCs significantly inhibited renal fibrosis in rats with DN. The mechanism may be related to inhibition of TGF-β1/Smad3 pathway, decreasing the expression of PAI-1 protein and reducing the accumulation of extracellular matrix, thereby balancing the fibrinolytic system.

* Legal Disclaimer: Chelation and Hyperbaric Therapy, Stem Cell Therapy, and other treatments and modalities mentioned or referred to in this web site are medical techniques that may or may not be considered “mainstream”. As with any medical treatment, results will vary among individuals, and there is no implication or guarantee that you will heal or achieve the same outcome as patients herein.

As with any procedure, there could be pain or other substantial risks involved. These concerns should be discussed with your health care provider prior to any treatment so that you have proper informed consent and understand that there are no guarantees to healing.

THE INFORMATION IN THIS WEBSITE IS OFFERED FOR GENERAL EDUCATIONAL PURPOSES ONLY AND DOES NOT IMPLY OR GIVE MEDICAL ADVICE. No Doctor/Patient relationship shall be deemed to have arisen simply by reading the information contained on these pages, and you should consult with your personal physician/care giver regarding your medical treatment before undergoing any sort of treatment or therapy.

Published on 05-08-2017
Authors: Hong Lang, Chun Dai