SERVICES*

Close-up TV News - Prolotheray lecture

Reversing Hypertension

Heavy Metals and all diseases

Close-Up TV News - Dr. Calapai's approach

News 12 Interview: Parkinson’s Disease, Glutathione and Chelation Therapy

News 12 Interview: Platelet-rich plasma therapy

Prolotherapy Interview News 12

News 12 Interview: Diabetes and Weight Loss
Early vitamin E supplementation attenuates diabetes-associated vascular dysfunction and the rise in protein kinase C-Гџ in mesenteric artery and ameliorates wall stiffness in femoral artery of Wistar rats *

Aims/hypothesis  The impact of early vitamin E supplementation on vascular function in diabetes remains unresolved. Therefore, we examined the effects of vitamin E on functional and structural parameters and on chemical markers that are disturbed in diabetes in mesenteric and femoral arteries.
Methods  Segments of both arteries, taken from control and 8-week-old streptozotocin diabetic Wistar rats that were treated or not with vitamin E, were mounted on wire and pressure myographs, after which endothelium-dependent and -independent vasodilation was assessed. Passive mechanical wall properties and the localisation and levels of protein kinase C (PKC)-beta2 and AGE were evaluated in these vessels.
Results  Vitamin E supplementation was associated with improved endothelium-dependent and -independent vasodilatation in mesenteric arteries from diabetic rats. Impaired endothelium-dependent vasodilatation in diabetic mesenteric vessels was associated with PKC-beta2 up-regulation and this was prevented by vitamin E supplementation. Increased AGE accumulation and plasma isoprostane levels in diabetic rats were not changed by vitamin E. In the femoral artery, vitamin E supplementation had no effect on endothelium-dependent or -independent vasodilatation, but did prevent the wall stiffening associated with diabetes.
Conclusions/interpretation  Early vitamin E supplementation has a beneficial effect on diabetes-induced endothelial dysfunction in resistance arteries. This benefit may arise from a direct effect on smooth muscle function, as a result of inhibition of the PKC-beta2 isoform by vitamin E.

* Legal Disclaimer: Chelation and Hyperbaric Therapy, Stem Cell Therapy, and other treatments and modalities mentioned or referred to in this web site are medical techniques that may or may not be considered “mainstream”. As with any medical treatment, results will vary among individuals, and there is no implication or guarantee that you will heal or achieve the same outcome as patients herein.

As with any procedure, there could be pain or other substantial risks involved. These concerns should be discussed with your health care provider prior to any treatment so that you have proper informed consent and understand that there are no guarantees to healing.

THE INFORMATION IN THIS WEBSITE IS OFFERED FOR GENERAL EDUCATIONAL PURPOSES ONLY AND DOES NOT IMPLY OR GIVE MEDICAL ADVICE. No Doctor/Patient relationship shall be deemed to have arisen simply by reading the information contained on these pages, and you should consult with your personal physician/care giver regarding your medical treatment before undergoing any sort of treatment or therapy.

Published on 10-14-2007