Close-up TV News - Prolotheray lecture

Reversing Hypertension

Heavy Metals and all diseases

Close-Up TV News - Dr. Calapai's approach

News 12 Interview: Parkinson’s Disease, Glutathione and Chelation Therapy

News 12 Interview: Platelet-rich plasma therapy

Prolotherapy Interview News 12

News 12 Interview: Diabetes and Weight Loss
Diffuse and persistent blood–spinal cord barrier disruption after contusive spinal cord injury rapidly recovers following intravenous infusion of bone marrow mesenchymal stem cells *

Intravenous infusion of mesenchymal stem cells (MSCs) has been shown to reduce the severity of experimental spinal cord injury (SCI), but mechanisms are not fully understood. One important consequence of SCI is damage to the microvasculature and disruption of the blood spinal cord barrier (BSCB). In the present study we induced a contusive SCI at T9 in the rat and studied the effects of intravenous MSC infusion on BSCB permeability, microvascular architecture and locomotor recovery over a 10 week period. Intravenously delivered MSCs could not be identified in the spinal cord, but distributed primarily to the lungs where they survived for a couple of days. Spatial and temporal changes in BSCB integrity were assessed by intravenous infusions of Evans blue (EvB) with in vivo and ex vivo optical imaging and spectrophotometric quantitation of EvB leakage into the parenchyma. SCI resulted in prolonged BSCB leakage that was most severe at the impact site but disseminated extensively rostral and caudal to the lesion over 6 weeks. Contused spinal cords also showed an increase in vessel size, reduced vessel number, dissociation of pericytes from microvessels and decreases in von Willebrand factor (vWF) and endothelial barrier antigen (EBA) expression. In MSC-treated rats, BSCB leakage was reduced, vWF expression was increased and locomotor function improved beginning 1 week post-MSC infusion, i.e., 2 weeks post-SCI. These results suggest that intravenously delivered MSCs have important effects on reducing BSCB leakage which could contribute to their therapeutic efficacy.

* Legal Disclaimer: Chelation and Hyperbaric Therapy, Stem Cell Therapy, and other treatments and modalities mentioned or referred to in this web site are medical techniques that may or may not be considered “mainstream”. As with any medical treatment, results will vary among individuals, and there is no implication or guarantee that you will heal or achieve the same outcome as patients herein.

As with any procedure, there could be pain or other substantial risks involved. These concerns should be discussed with your health care provider prior to any treatment so that you have proper informed consent and understand that there are no guarantees to healing.

THE INFORMATION IN THIS WEBSITE IS OFFERED FOR GENERAL EDUCATIONAL PURPOSES ONLY AND DOES NOT IMPLY OR GIVE MEDICAL ADVICE. No Doctor/Patient relationship shall be deemed to have arisen simply by reading the information contained on these pages, and you should consult with your personal physician/care giver regarding your medical treatment before undergoing any sort of treatment or therapy.

Published on 11-03-2017
Authors: Takashi Matsushita, Karen L.Lankford, Edgardo J.Arroyo, Masanori Sasaki, Milad Neyazi, Christine Radtke, Jeffery D.Kocsis
Source: Experimental Neurology, Volume 267, May 2015, Pages 152-164