SERVICES*

Close-up TV News - Prolotheray lecture

Reversing Hypertension

Heavy Metals and all diseases

Close-Up TV News - Dr. Calapai's approach

News 12 Interview: Parkinson’s Disease, Glutathione and Chelation Therapy

News 12 Interview: Platelet-rich plasma therapy

Prolotherapy Interview News 12

News 12 Interview: Diabetes and Weight Loss
Dietary fish oil reverses lipotoxicity, altered glucose metabolism, and nPKCepsilon translocation in the heart of dyslipemic insulin-resistant rats. *

The present study analyzes several markers of energy metabolism in the heart muscle of dyslipemic insulin-resistant rats fed a sucrose-rich diet (SRD, 62.5% wt/wt) for 8 months. It also explores the possible beneficial effects of dietary fish oil supplementation on cardiac lipids and glucose metabolism. With this purpose, male Wistar rats were fed an SRD for 6 months. Whereas half of the animals continued with the same diet for up to 8 months, the other half was fed an SRD in which fish oil (7% + 1% corn oil wt/wt) replaced corn oil (8% wt/wt) from months 6 to 8. The results were compared with rats fed a control diet (starch 62.5% wt/wt).

The cardiac muscle of SRD-fed rats showed (1) a significant reduction (P < .05) in key enzymes activities and metabolites involved in glucose metabolism, accompanied by a significant (P < .05) increase of lipid storage (triglyceride, long-chain acyl coenzyme A, and diacylglycerol), and (2) a significant increase (P < .05) of nPKCepsilon protein mass expression in the membrane fraction without changes in the cPKCbetaII. Dietary fish oil, which reduces the availability of plasma lipid flux and normalizes glucose homeostasis, was able to reverse heart muscle lipotoxicity. Fish oil benefits key enzymes activities in glucose metabolism and normalizes glycogen and glucose-6-phosphate concentration, and the altered nPKCepsilon protein mass expression translocation in the heart of SRD-fed rats. Our findings suggest that manipulation of dietary fats may play a key role in the management of lipid disorders, offering a protection against the development of cardiovascular diseases.

* Legal Disclaimer: Chelation and Hyperbaric Therapy, Stem Cell Therapy, and other treatments and modalities mentioned or referred to in this web site are medical techniques that may or may not be considered “mainstream”. As with any medical treatment, results will vary among individuals, and there is no implication or guarantee that you will heal or achieve the same outcome as patients herein.

As with any procedure, there could be pain or other substantial risks involved. These concerns should be discussed with your health care provider prior to any treatment so that you have proper informed consent and understand that there are no guarantees to healing.

THE INFORMATION IN THIS WEBSITE IS OFFERED FOR GENERAL EDUCATIONAL PURPOSES ONLY AND DOES NOT IMPLY OR GIVE MEDICAL ADVICE. No Doctor/Patient relationship shall be deemed to have arisen simply by reading the information contained on these pages, and you should consult with your personal physician/care giver regarding your medical treatment before undergoing any sort of treatment or therapy.

Published on 08-04-2008
Authors: D.Alessandro ME, Chicco A, Lombardo YB.
Source: Department of Biochemistry, School of Biochemistry, University of Litoral, Ciudad Universitaria, 3000 Santa Fe, Argentina.