Close-up TV News - Prolotheray lecture

Reversing Hypertension

Heavy Metals and all diseases

Close-Up TV News - Dr. Calapai's approach

News 12 Interview: Parkinson’s Disease, Glutathione and Chelation Therapy

News 12 Interview: Platelet-rich plasma therapy

Prolotherapy Interview News 12

News 12 Interview: Diabetes and Weight Loss
Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells *

Background: A major challenge in cancer chemotherapy has been developing safe and clinically efficacious chemotherapeutic agents. With its low toxicity profile, curcumin (diferuloylmethane), a naturally occurring flavinoid derived from the rhizome of Curcuma longa, has great promise. In vitro and in vivo preclinical studies have shown its inhibitory anticancer, antioxidant, anti-inflammatory, antiproliferative, and proapoptotic activities. The multiple mechanisms of the antitumor effect of curcumin putatively include down-regulating the expression of gene products such as nuclear factor-κB, growth suppression, inducing apoptosis, and modulating various signal transduction pathways and the expression of many oncogenes. The mechanisms underlying the antitumor activity of curcumin have not, however, been completely delineated. Methods: An oligonucleotide microarray chip was developed and used to profile microRNA (miRNA) expressions in pancreatic cells treated with curcumin. Transcripts with regulated expression patterns on the arrays were validated by real-time PCRs. Additionally, potential mRNA targets were analyzed bioinformatically and confirmed with flow cytometry experiments. Results: Curcumin alters miRNA expression in human pancreatic cells, up-regulating miRNA-22 and down-regulating miRNA-199a*, as confirmed by TaqMan real-time PCR. Upregulation of miRNA-22 expression by curcumin or by transfection with miRNA-22 mimetics in the PxBC-3 pancreatic cancer cell line suppressed expression of its target genes SP1 transcription factor (SP1) and estrogen receptor 1 (ESR1), while inhibiting miRNA-22 with antisense enhanced SP1 and ESR1 expression. Conclusions: These observations suggest that modulation of miRNA expression may be an important mechanism underlying the biological effects of curcumin. [Mol Cancer Ther 2008;7(3):464–73]

* Legal Disclaimer: Chelation and Hyperbaric Therapy, Stem Cell Therapy, and other treatments and modalities mentioned or referred to in this web site are medical techniques that may or may not be considered “mainstream”. As with any medical treatment, results will vary among individuals, and there is no implication or guarantee that you will heal or achieve the same outcome as patients herein.

As with any procedure, there could be pain or other substantial risks involved. These concerns should be discussed with your health care provider prior to any treatment so that you have proper informed consent and understand that there are no guarantees to healing.

THE INFORMATION IN THIS WEBSITE IS OFFERED FOR GENERAL EDUCATIONAL PURPOSES ONLY AND DOES NOT IMPLY OR GIVE MEDICAL ADVICE. No Doctor/Patient relationship shall be deemed to have arisen simply by reading the information contained on these pages, and you should consult with your personal physician/care giver regarding your medical treatment before undergoing any sort of treatment or therapy.

Published on 09-27-2010
Authors: Michael Sun, Zeev Estrov, Yuan Ji, Kevin R. Coombes, David H. Harris and Razelle Kurzrock
Source: Mol Cancer Ther March 2008 7; 464