Close-up TV News - Prolotheray lecture

Reversing Hypertension

Heavy Metals and all diseases

Close-Up TV News - Dr. Calapai's approach

News 12 Interview: Parkinson’s Disease, Glutathione and Chelation Therapy

News 12 Interview: Platelet-rich plasma therapy

Prolotherapy Interview News 12

News 12 Interview: Diabetes and Weight Loss
Creatine supplementation improves dopaminergic cell survival and protects against MPP+ toxicity in an organotypic tissue culture system. *

Cell replacement therapy using mesencephalic precursor cells is an experimental approach for the treatment of Parkinson's disease (PD). A significant problem associated with this procedure is the poor survival of grafted neurons. Impaired energy metabolism is considered to contribute to neuronal cell death after transplantation. Creatine is a substrate for mitochondrial and cytosolic creatine kinases (CK) and buffers cellular ATP resources.

 Furthermore, elevated cellular creatine levels facilitate metabolic channeling and show antiapoptotic properties. Exogenous creatine supplementation therefore might offer a tool for improvement of dopaminergic neuron survival. The present study aimed at investigating the effects of creatine on cell survival of rat embryonic day 14 (E14) ventral mesencephalic neurons grown as organotypic free-floating roller tube (FFRT) cultures. We found that the brain-specific isoform of CK (BB-CK) and the ubiquitous mitochondrial isoform (uMt-CK) are expressed at high levels in FFRT cultures and colocalize with tyrosine hydroxylase immunoreactive (TH-ir) cells.

 Exposure of these cultures to creatine induced an increase in the content of the BB-CK isotype. Creatine (5 mM) administration starting at day in vitro (DIV) 7 resulted in a significant increase (+35%) in TH-ir cell density at DIV21. In addition, we observed that creatine treatment provided neuroprotection against 1-methyl-4-phenyl pyridinium ion (MPP+)-induced TH-ir cell loss in the FFRT culture system, resulting in a significantly higher density (+19%) of TH-ir neurons in creatine-treated cultures compared to corresponding controls.

The decrease of TH-ir neurons in the MPP+-treated group corresponded with an increase in immunoreactivity for active caspase-3, an effect that was not seen in the group receiving creatine supplementation. In conclusion, our data imply that creatine administration is beneficial for the survival of TH-ir neurons encountering harmful conditions.

* Legal Disclaimer: Chelation and Hyperbaric Therapy, Stem Cell Therapy, and other treatments and modalities mentioned or referred to in this web site are medical techniques that may or may not be considered “mainstream”. As with any medical treatment, results will vary among individuals, and there is no implication or guarantee that you will heal or achieve the same outcome as patients herein.

As with any procedure, there could be pain or other substantial risks involved. These concerns should be discussed with your health care provider prior to any treatment so that you have proper informed consent and understand that there are no guarantees to healing.

THE INFORMATION IN THIS WEBSITE IS OFFERED FOR GENERAL EDUCATIONAL PURPOSES ONLY AND DOES NOT IMPLY OR GIVE MEDICAL ADVICE. No Doctor/Patient relationship shall be deemed to have arisen simply by reading the information contained on these pages, and you should consult with your personal physician/care giver regarding your medical treatment before undergoing any sort of treatment or therapy.

Published on 02-28-2008