SERVICES*

Close-up TV News - Prolotheray lecture

Reversing Hypertension

Heavy Metals and all diseases

Close-Up TV News - Dr. Calapai's approach

News 12 Interview: Parkinson’s Disease, Glutathione and Chelation Therapy

News 12 Interview: Platelet-rich plasma therapy

Prolotherapy Interview News 12

News 12 Interview: Diabetes and Weight Loss
Chronic Exposure to Arsenic Causes Increased Cell Survival, DNA Damage, and Increased Expression of Mitochondrial Transcription Factor A (mtTFA) in Human Prostate Epithelial Cells *

Arsenic is a known carcinogen, and its exposure is associated with cancers in multiple target organs including the prostate. Whether arsenic causes cancer by increased cell proliferation or cell survival is not clear. Additionally, mitochondria have been shown to play important roles in arsenic-induced DNA damage and carcinogenesis. However, the mechanism of mitochondrial involvement in arsenic-induced cancer is not clear. Therefore, the objectives of this study were to investigate the effect of arsenic on cell proliferation/survival and genotoxicity, and to determine the effect of arsenic on the expression of mitochondrial transcription factor A (mtTFA) in human prostate epithelial cells, RWPE-1. Results of this study revealed that chronic exposure to arsenic causes increased cell survival. Arsenic also induced nuclear DNA damage and mutations in mitochondrial DNA. Expressions of DNA repair genes ERCC6, XPC, OGG1, and reactive oxygen species (ROS) scavenger MnSOD was also altered in arsenic-exposed cells. Arsenic concentration-dependent increased expression of mtTFA and its regulator NRF-1 was observed in arsenic-exposed cells, suggesting that arsenic regulates mitochondrial activity through an NRF-1-dependent pathway. In summary, this study suggests that chronic exposure to arsenic causes DNA damage and increased cell survival that may ultimately result in neoplastic transformation of human prostate epithelial cells. Additionally, this study also provides evidence that arsenic controls mitochondrial function by regulating mtTFA expression.

* Legal Disclaimer: Chelation and Hyperbaric Therapy, Stem Cell Therapy, and other treatments and modalities mentioned or referred to in this web site are medical techniques that may or may not be considered “mainstream”. As with any medical treatment, results will vary among individuals, and there is no implication or guarantee that you will heal or achieve the same outcome as patients herein.

As with any procedure, there could be pain or other substantial risks involved. These concerns should be discussed with your health care provider prior to any treatment so that you have proper informed consent and understand that there are no guarantees to healing.

THE INFORMATION IN THIS WEBSITE IS OFFERED FOR GENERAL EDUCATIONAL PURPOSES ONLY AND DOES NOT IMPLY OR GIVE MEDICAL ADVICE. No Doctor/Patient relationship shall be deemed to have arisen simply by reading the information contained on these pages, and you should consult with your personal physician/care giver regarding your medical treatment before undergoing any sort of treatment or therapy.

Published on 10-10-2012