SERVICES*

Close-up TV News - Prolotheray lecture

Reversing Hypertension

Heavy Metals and all diseases

Close-Up TV News - Dr. Calapai's approach

News 12 Interview: Parkinson’s Disease, Glutathione and Chelation Therapy

News 12 Interview: Platelet-rich plasma therapy

Prolotherapy Interview News 12

News 12 Interview: Diabetes and Weight Loss
Carcinogenic heavy metals, As3+ and Cr6+, increase affinity of nuclear mono-ubiquitinated annexin A1 for DNA containing 8-oxo-guanosine, and promote translesion DNA synthesis *

To elucidate the biological roles of mono-ubiquitinated annexin A1 in nuclei, we investigated the interaction of purified nuclear mono-ubiquitinated annexin A1 with intact and oxidatively damaged DNA. We synthesized the 80mer 5′-GTCCACTATTAAAGAACGTGGACTCCAACGTCAAAGGGCGAAAAACCGTCTATCAGGGCGATGGCCCACTACGTGAACCA-3′ (P0G), and four additional 80mers, each with a selected single G in position 14, 30, 37 or 48 replaced by 8-oxo-guanosine (8-oxo-G) to model DNA damaged at a specific site by oxidation. Nuclear mono-ubiquitinated annexin A1 was able to bind oligonucleotides containing 8-oxo-G at specific positions, and able to anneal damaged oligonucleotide DNA to M13mp18 in the presence of Ca2+ or heavy metals such as As3+ and Cr6+. M13mp18/8-oxo-G-oligonucleotide duplexes were unwound by nuclear annexin A1 in the presence of Mg2+ and ATP. The binding affinity of nuclear annexin A1 for ssDNA was higher for oxidatively damaged oligonucleotides than for the undamaged oligonucleotide P0G, whereas the maximal binding was not significantly changed. The carcinogenic heavy metals, As3+ and Cr6+, increased the affinity of mono-ubiquitinated annexin A1 for oxidatively damaged oligonucleotides. Nuclear mono-ubiquitinated annexin A1 stimulated translesion DNA synthesis by Pol β. Nuclear extracts of L5178Y tk(+/−) lymphoma cells also promoted translesion DNA synthesis in the presence of the heavy metals As3+ and Cr6+. This DNA synthesis was inhibited by anti-annexin A1 antibody. These observations do not prove but provide strong evidence for the hypothesis that nuclear mono-ubiquitinated annexin A1 is involved in heavy metal promoted translesion DNA synthesis, thereby exhibiting the capacity to increase the introduction of mutations into DNA.

* Legal Disclaimer: Chelation and Hyperbaric Therapy, Stem Cell Therapy, and other treatments and modalities mentioned or referred to in this web site are medical techniques that may or may not be considered “mainstream”. As with any medical treatment, results will vary among individuals, and there is no implication or guarantee that you will heal or achieve the same outcome as patients herein.

As with any procedure, there could be pain or other substantial risks involved. These concerns should be discussed with your health care provider prior to any treatment so that you have proper informed consent and understand that there are no guarantees to healing.

THE INFORMATION IN THIS WEBSITE IS OFFERED FOR GENERAL EDUCATIONAL PURPOSES ONLY AND DOES NOT IMPLY OR GIVE MEDICAL ADVICE. No Doctor/Patient relationship shall be deemed to have arisen simply by reading the information contained on these pages, and you should consult with your personal physician/care giver regarding your medical treatment before undergoing any sort of treatment or therapy.

Published on 02-14-2013