Close-up TV News - Prolotheray lecture

Reversing Hypertension

Heavy Metals and all diseases

Close-Up TV News - Dr. Calapai's approach

News 12 Interview: Parkinson’s Disease, Glutathione and Chelation Therapy

News 12 Interview: Platelet-rich plasma therapy

Prolotherapy Interview News 12

News 12 Interview: Diabetes and Weight Loss
Blood Lead Is a Predictor of Homocysteine Levels in a Population-Based Study of Older Adults *

Lead and homocysteine are both associated with cardiovascular disease and cognitive dysfunction. We evaluated the relations among blood lead, tibia lead, and homocysteine levels by cross-sectional analysis of data among subjects in the Baltimore Memory Study, a longitudinal study of 1,140 randomly selected residents in Baltimore, Maryland, who were 50–70 years of age. Tibia lead was measured by 109Cd K-shell X-ray fluorescence. The subject population had a mean ± SD age of 59.3 ± 5.9 years and was 66.0% female, 53.9% white, and 41.4% black or African American. Mean ± SD blood lead, tibia lead, and homocysteine levels were 3.5 ± 2.4 μg/dL, 18.9 ± 12.5 μg/g, and 10.0 ± 4.1 μmol/L, respectively. In unadjusted analysis, blood lead and homocysteine were moderately correlated (Pearson’s r = 0.27, p < 0.01).

After adjustment for age, sex, race/ethnicity, educational level, tobacco and alcohol consumption, and body mass index using multiple linear regression, results revealed that homocysteine levels increased 0.35 μmol/L per 1.0 μg/dL increase in blood lead (p < 0.01). The relations of blood lead with homocysteine levels did not differ in subgroups distinguished by age, sex, or race/ethnicity. Tibia lead was modestly correlated with blood lead (Pearson’s r = 0.12, p < 0.01) but was not associated with homocysteine levels. To our knowledge, these are the first data to reveal an association between blood lead and homocysteine. These results suggest that homocysteine could be a mechanism that underlies the effects of lead on the cardiovascular and central nervous systems, possibly offering new targets for intervention to prevent the long-term consequences of lead exposure.

* Legal Disclaimer: Chelation and Hyperbaric Therapy, Stem Cell Therapy, and other treatments and modalities mentioned or referred to in this web site are medical techniques that may or may not be considered “mainstream”. As with any medical treatment, results will vary among individuals, and there is no implication or guarantee that you will heal or achieve the same outcome as patients herein.

As with any procedure, there could be pain or other substantial risks involved. These concerns should be discussed with your health care provider prior to any treatment so that you have proper informed consent and understand that there are no guarantees to healing.

THE INFORMATION IN THIS WEBSITE IS OFFERED FOR GENERAL EDUCATIONAL PURPOSES ONLY AND DOES NOT IMPLY OR GIVE MEDICAL ADVICE. No Doctor/Patient relationship shall be deemed to have arisen simply by reading the information contained on these pages, and you should consult with your personal physician/care giver regarding your medical treatment before undergoing any sort of treatment or therapy.

Published on 04-13-2009
Authors: Jyme H. Schafer,1,2 Thomas A. Glass,3 Joseph Bressler,4,5,6 Andrew C. Todd,7 and Brian S. Schwartz1,2,3
Source: Environ Health Perspect. 2005 January; 113(1),: 31–35.