SERVICES*

Close-up TV News - Prolotheray lecture

Reversing Hypertension

Heavy Metals and all diseases

Close-Up TV News - Dr. Calapai's approach

News 12 Interview: Parkinson’s Disease, Glutathione and Chelation Therapy

News 12 Interview: Platelet-rich plasma therapy

Prolotherapy Interview News 12

News 12 Interview: Diabetes and Weight Loss
Blood and urine mercury levels in adult amalgam patients of a randomized controlled trial: Interaction of Hg species in erythrocytes *

Abstract
Parts of the population are permanently exposed to low levels of Hg° and Hg(II) from dental amalgam. It was the aim (1) to investigate the internal exposure to amalgam-related mercury from the kinetics of inorganic Hg in plasma and erythrocytes after amalgam removal, and (2) to estimate the amalgam-related absorbed dose. Dietary coexposure was monitored by determination of blood organic-Hg. Postremoval steady-state Hg concentrations were measured for 18 months. Eighty-two patients had been randomized into three groups: (A) removal of the fillings; (B) removal and non-specific detoxification, and (C) a health promotion program without removal. After amalgam removal, inorganic Hg dropped rapidly in plasma and red cells, stabilizing at 27% of preremoval levels after 60 days. Concentrations of organic Hg in plasma remained unchanged, indicating no change in dietary uptake of organic Hg. The concentration of organic Hg in red cells of group A was in the early postremoval phase lower and in the late postremoval phase higher than the preremoval control (p<0.01 for low-high difference). A protracted increase in organic Hg was also found in red cells of group B after 60 days. Thus, the effect of removal on organic Hg levels in the combined group A+B was compared with the values of group C in a linear mixed effects (LME) model which showed a significant increase with time in group A+B (p=0.028). In all groups, time profiles of urinary concentration and excretion of total-Hg were very similar to those of inorganic-Hg levels in plasma. From extrapolations of blood and urine data it was estimated that the amalgam-related inhalation and ingestion of Hg species were within the limits proposed by WHO, ATSDR and EPA. The integrated daily Hg dose absorbed from amalgam was estimated up to 3μg for an average number of fillings and at 7.4 for a high amalgam load.

Conclusions
This is the first study on adult amalgam patients which continuously monitored the postremoval decline of inorganic Hg and the coexposure from dietary organic Hg in a randomized-controlled-trial design. The integrated daily dose of 7.4 μg absorbed from a high amalgam load is well below the tolerable dose of 30 μg (WHO, 1990). The unexpected postremoval increase in erythrocyte organic Hg, which is associated with the depletion of cellular inorganic Hg, might result from binding of organic Hg to cellular sites previously occupied by inorganic Hg.

 

* Legal Disclaimer: Chelation and Hyperbaric Therapy, Stem Cell Therapy, and other treatments and modalities mentioned or referred to in this web site are medical techniques that may or may not be considered “mainstream”. As with any medical treatment, results will vary among individuals, and there is no implication or guarantee that you will heal or achieve the same outcome as patients herein.

As with any procedure, there could be pain or other substantial risks involved. These concerns should be discussed with your health care provider prior to any treatment so that you have proper informed consent and understand that there are no guarantees to healing.

THE INFORMATION IN THIS WEBSITE IS OFFERED FOR GENERAL EDUCATIONAL PURPOSES ONLY AND DOES NOT IMPLY OR GIVE MEDICAL ADVICE. No Doctor/Patient relationship shall be deemed to have arisen simply by reading the information contained on these pages, and you should consult with your personal physician/care giver regarding your medical treatment before undergoing any sort of treatment or therapy.

Published on 09-02-2009
Authors: S. Halbacha, , , S. Vogtb, W. Kohlerc, N. Felgenhauerd, G. Welzle, L. Kremersb, T. Zilkerd and D. Melchartc
Source: Environmental Research Volume 107, Issue 1, May 2008, Pages 69-78