SERVICES*

Close-up TV News - Prolotheray lecture

Reversing Hypertension

Heavy Metals and all diseases

Close-Up TV News - Dr. Calapai's approach

News 12 Interview: Parkinson’s Disease, Glutathione and Chelation Therapy

News 12 Interview: Platelet-rich plasma therapy

Prolotherapy Interview News 12

News 12 Interview: Diabetes and Weight Loss
Alpha-lipoic acid differently affects the reserpine-induced oxidative stress in the striatum and prefrontal cortex of rat brain *

Antioxidative properties of α-lipoic acid (LA) are widely investigated in different in vivo and in vitro models. The aim of this study was to examine whether LA attenuates oxidative stress induced in rats by reserpine, a model substance frequently used to produce Parkinsonism in animals. Male Wistar rats were treated with reserpine (5 mg/kg) and LA (50 mg/kg) separately or in combination.

The levels of reduced glutathione (GSH), glutathione disulfide (GSSG), nitric oxide (NO) and S-nitrosothiols as well as activities of glutathione peroxidase (GPx), glutathione-S-transferase (GST) and L-γ-glutamyl transpeptidase (γ-GT) were determined in the striatum and prefrontal cortex homogenates.

In the striatum and prefrontal cortex a single dose of reserpine significantly enhanced levels of GSSG and NO but not that of S-nitrosothiols when compared with control. In the striatum, LA administered jointly with reserpine markedly increased the concentration of GSH and decreased GSSG level. In the prefrontal cortex, such treatment produced only an increasing tendency in GSH level but caused no changes in GSSG content.

In both structures LA injected jointly with reserpine markedly decreased NO concentrations but did not cause significant changes in S-nitrosothiol levels when compared with control. Enzymatic activities of GPx and GST were intensified by LA in the striatum. In the prefrontal cortex, GPx activity was not altered, while that of GST was decreased. γ-GT activity was attenuated by reserpine in the striatum while LA reversed this effect. Such changes were not observed in the prefrontal cortex.

The mode of LA action in the striatum during the reserpine-evoked oxidative stress strongly suggests that this compound may be of therapeutic value in the treatment of Parkinson’s disease.

* Legal Disclaimer: Chelation and Hyperbaric Therapy, Stem Cell Therapy, and other treatments and modalities mentioned or referred to in this web site are medical techniques that may or may not be considered “mainstream”. As with any medical treatment, results will vary among individuals, and there is no implication or guarantee that you will heal or achieve the same outcome as patients herein.

As with any procedure, there could be pain or other substantial risks involved. These concerns should be discussed with your health care provider prior to any treatment so that you have proper informed consent and understand that there are no guarantees to healing.

THE INFORMATION IN THIS WEBSITE IS OFFERED FOR GENERAL EDUCATIONAL PURPOSES ONLY AND DOES NOT IMPLY OR GIVE MEDICAL ADVICE. No Doctor/Patient relationship shall be deemed to have arisen simply by reading the information contained on these pages, and you should consult with your personal physician/care giver regarding your medical treatment before undergoing any sort of treatment or therapy.

Published on 02-05-2008