SERVICES

Close-up TV News - Prolotheray lecture

Reversing Hypertension

Heavy Metals and all diseases

Close-Up TV News - Dr. Calapai's approach

News 12 Interview: Parkinson’s Disease, Glutathione and Chelation Therapy

News 12 Interview: Platelet-rich plasma therapy

Prolotherapy Interview News 12

News 12 Interview: Diabetes and Weight Loss
Epidemic influenza and vitamin D

Abstract

In 1981, R. Edgar Hope-Simpson proposed that a ‘seasonal stimulus’ intimately associated with solar radiation explained the remarkable seasonality of epidemic influenza. Solar radiation triggers robust seasonal vitamin D production in the skin; vitamin D deficiency is common in the winter, and activated vitamin D, 1,25(OH)2D, a steroid hormone, has profound effects on human immunity. 1,25(OH)2D acts as an immune system modulator, preventing excessive expression of inflammatory cytokines and increasing the ‘oxidative burst’ potential of macrophages. Perhaps most importantly, it dramatically stimulates the expression of potent anti-microbial peptides, which exist in neutrophils, monocytes, natural killer cells, and in epithelial cells lining the respiratory tract where they play a major role in protecting the lung from infection. Volunteers inoculated with live attenuated influenza virus are more likely to develop fever and serological evidence of an immune response in the winter. Vitamin D deficiency predisposes children to respiratory infections. Ultraviolet radiation (either from artificial sources or from sunlight) reduces the incidence of viral respiratory infections, as does cod liver oil (which contains vitamin D). An interventional study showed that vitamin D reduces the incidence of respiratory infections in children. We conclude that vitamin D, or lack of it, may be Hope-Simpson's ‘seasonal stimulus’.

Published on 10-30-2009
Authors: J. J. CANNELL a1c1, R. VIETH a2, J. C. UMHAU a3, M. F. HOLICK a4, W. B. GRANT a5, S. MADRONICH a6, C. F. GARLAND a7 and E. GIOVANNUCCI a8
Source: Epidemiology and Infection (2006),, 134:6:1129-1140 Cambridge University Press