SERVICES

Close-up TV News - Prolotheray lecture

Reversing Hypertension

Heavy Metals and all diseases

Close-Up TV News - Dr. Calapai's approach

News 12 Interview: Parkinson’s Disease, Glutathione and Chelation Therapy

News 12 Interview: Platelet-rich plasma therapy

Prolotherapy Interview News 12

News 12 Interview: Diabetes and Weight Loss
Migration of mercury from dental amalgam through human teeth

Exposure to mercury from dental amalgams, with possible negative health effects, has generally been considered to occur via either erosion or evaporation directly from the surface of fillings, followed by ingestion. The aim of this study was to determine the relative importance of the direct migration of mercury through the tooth as an alternative exposure pathway. X-ray fluorescence imaging has been used to determine quantitatively the spatial distribution of Hg, Ca, Zn and Cu in sections of human teeth that had been filled with amalgam for more than 20 years. X-ray absorption near-edge spectroscopy (XANES) was also employed to gain chemical information on the mercury present in the teeth.

Hg (up to 10 mg g-1) and Zn (>100 mg g-1) were detected in the teeth several millimetres from the location of the amalgams. At high resolution, Hg showed higher concentrations in dentinal tubules while Zn was generally evenly distributed. XANES showed that the chemical form of Hg that had migrated into the tooth had been altered from that present in the amalgam. The differing spatial distributions of Hg and Zn suggest distinct transport mechanisms for the two metals, presumably chemical for Zn and initially physical for Hg. Subsequent oxidation of Hg may lead to a loss of mobility or the development of a secondary transport mechanism. Most importantly the detection of Hg in areas of the tooth that once contained an active bloodstream and in calculus indicates that both exposure pathways should be considered as significant.

Published on 09-29-2008
Authors: H. H. Harris, S. Vogt, H. Eastgate, D. G. Legnini, B. Hornberger, Z. Cai, B. Lai and P. A. Lay
Source: J. Synchrotron Rad. (2008),. 15, 123-128