SERVICES

Close-up TV News - Prolotheray lecture

Reversing Hypertension

Heavy Metals and all diseases

Close-Up TV News - Dr. Calapai's approach

News 12 Interview: Parkinson’s Disease, Glutathione and Chelation Therapy

News 12 Interview: Platelet-rich plasma therapy

Prolotherapy Interview News 12

News 12 Interview: Diabetes and Weight Loss
Cadmium inhibits the electron transfer chain and induces Reactive Oxygen Species

 

Recent research indicates that cadmium (Cd) induces oxidative damage in cells; however, the mechanism of the oxidative stress induced by this metal is unclear. We investigated the effects of Cd on the individual complexes of the electron transfer chain (ETC) and on the stimulation of reactive oxygen species (ROS) production in mitochondria.

The activity of complexes II (succinate:ubiquinone oxidoreductase) and III (ubiquinol:cytochrome c oxidoreductase) of mitochondrial ETC from liver, brain, and heart showed greater inhibition by Cd than the other complexes. Cd stimulated ROS production in the mitochondria of all three tissues mentioned above.

The effect of various electron donors (NADH, succinate, and 2,3-dimethoxy-5-methyl-6-decyl-1,4-benzoquinol) on ROS production was tested separately in the presence and in the absence of Cd. ESR showed that complex III might be the only site of ROS production induced by Cd.

The results of kinetic studies and electron turnover experiments suggest that Cd may bind between semiubiquinone and cytochrome b566 of the Q0 site of cytochrome b of complex III, resulting in accumulation of semiubiquinones at the Q0 site. The semiubiquinones, being unstable, are prone to transfer one electron to molecular oxygen to form superoxide, providing a possible mechanism for Cd-induced generation of ROS in mitochondria.

Published on 02-28-2008