Close-Up TV News - Dr. Calapai's approach

News 12 Interview: Parkinson’s Disease, Glutathione and Chelation Therapy

News 12 Interview: Platelet-rich plasma therapy

Prolotherapy Interview News 12

News 12 Interview: Diabetes and Weight Loss

Adipose-Derived Stem Cells for Wound Healing Applications


Nonhealing wounds remain a significant challenge for plastic surgeons. More than 600,000 people suffer from venous ulcers and 1.5 to 3 million people are being treated for pressure sores every year in the United States. The use of tissue engineering techniques such as stem-cell therapy and gene therapy to improve wound healing is a promising strategy. Adipose tissue represents a source of cells that may be able to enhance wound healing. Adipose-derived stem cells (ASCs)…

Read the Rest...

Locally Administered Adipose-Derived Stem Cells Accelerate Wound Healing Through Differentiation and Vasculogenesis


Despite advances in wound closure techniques and devices, there is still a critical need for new methods of enhancing the healing process to achieve optimal outcomes. Recently, stem cell therapy has emerged as a new approach to accelerate wound healing. Adipose-derived stem cells (ASCs) hold great promise for wound healing, because they are multipotential stem cells capable of differentiation into various cell lineages and secretion of angiogenic growth factors. The aim of this study was…

Read the Rest...

Adipose stem cell-based regenerative medicine for reversal of diabetic hyperglycemia


Diabetes mellitus (diabetes) is a devastating disease that affects millions of people globally and causes a myriad of complications that lead to both patient morbidity and mortality. Currently available therapies, including insulin injection and beta cell replacement through either pancreas or pancreatic islet transplantation, are limited by the availability of organs. Stem cells provide an alternative treatment option for beta cell replacement through selective differentiation of stem cells into cells that recognize glucose and produce…

Read the Rest...

Stem Cell Therapy to Treat Heart Ischaemia: Implications for Diabetes Cardiovascular Complications


Diabetes mellitus is a well-known risk factor for coronary artery disease (CAD), which can lead to acute myocardial infarction, chronic myocardial ischaemia and heart failure. Despite the advantages in medical treatment, percutaneous coronary intervention (PCI) and coronary artery bypass grafting (CABG), morbidity and mortality is still high in patients with CAD. Along with PCI and CABG or in patients without options for revascularization, stem cell regenerative therapy in controlled trials is a possibility. Stem cells…

Read the Rest...

Advanced Search Recent Activity | Export Efficacy and safety of autologous bone marrow-derived stem cell transplantation in patients with type 2 diabetes mellitus: a randomized placebo-controlled study.


There is a growing interest in cell-based therapies in T2DM as β-cell failure is progressive and inexorable with the advancing duration of disease. This prospective, randomized, single-blinded placebo-controlled study evaluates the efficacy and safety of autologous bone marrow-derived stem cell transplantation (ABMSCT) in T2DM. Twenty-one patients with triple oral antidiabetic drug failure and requiring insulin ≥0.4 IU per kg per day with HbA1c <7.5% were randomly assigned to an intervention (n = 11) and control…

Read the Rest...

Concise Review: Mesenchymal Stem Cell Treatment of the Complications of Diabetes Mellitus


Mesenchymal stem cells (MSCs) are multipotent, self-renewing cells that can be found in almost all postnatal organs and tissues. The main functional characteristics of MSCs are their immunomodulatory ability, capacity for self-renewal, and differentiation into mesodermal tissues. The ability of MSCs to differentiate into several cell types, including muscle, brain, vascular, skin, cartilage, and bone cells, makes them attractive as therapeutic agents for a number of diseases including complications of diabetes mellitus. We review here…

Read the Rest...

C-Peptide Levels and Insulin Independence Following Autologous Nonmyeloablative Hematopoietic Stem Cell Transplantation in Newly Diagnosed Type 1 Diabetes Mellitus


Context In 2007, the effects of the autologous nonmyeloablative hematopoietic stem cell transplantation (HSCT) in 15 patients with type 1 diabetes mellitus (DM) were reported. Most patients became insulin free with normal levels of glycated hemoglobin A1c (HbA1c) during a mean 18.8-month follow-up. To investigate if this effect was due to preservation of beta-cell mass, continued monitoring was performed of C-peptide levels after stem cell transplantation in the 15 original and 8 additional patients. Objective…

Read the Rest...

Adipose Tissue-Derived Mesenchymal Stem Cell and Angiogenesis in Ischemic Heart Disease


Acute myocardial infarction is one of the most important causes of death and disability worldwide. The limited capacity of the adult heart to self-regenerate and revascularize the ischemic damaged tissue leads to tissue loss, ventricular remodeling, and persistent deterioration in cardiac performance increasing the frequency of heart failure. Over the last several years, adult stem cells have appeared as one of the novel promising therapeutic approaches for the treatment of ischemic heart disease. However, the…

Read the Rest...

The cardioprotective effect of mesenchymal stem cells is mediated by IGF-I and VEGF


Emerging evidence suggests that adipose tissue-derived stem cells (ASCs) can be used for the treatment of ischemic heart diseases. However, the mechanisms underlying their therapeutic effects have not been clearly defined. In this study cytokines released by ASCs were detected by ELISA and pro-angiogenic effects were assessed by tube formation assay. To define the anti-apoptotic effect of ASCs, neonatal rat cardiomyocytes were subjected to hypoxia condition in a co-culture system. Our data show that ASCs…

Read the Rest...

IFATS Collection: Human Adipose Tissue-Derived Stem Cells Induce Angiogenesis and Nerve Sprouting Following Myocardial Infarction, in Conjunction with Potent Preservation of Cardiac Function


The administration of therapeutic cell types, such as stem and progenitor cells, has gained much interest for the limitation or repair of tissue damage caused by a variety of insults. However, it is still uncertain whether the morphological and functional benefits are mediated predominantly via cell differentiation or paracrine mechanisms. Here, we assessed the extent and mechanisms of adipose-derived stromal/stem cells (ASC)-dependent tissue repair in the context of acute myocardial infarction. Human ASCs in saline…

Read the Rest...