Close-Up TV News - Dr. Calapai's approach

News 12 Interview: Parkinson’s Disease, Glutathione and Chelation Therapy

News 12 Interview: Platelet-rich plasma therapy

Prolotherapy Interview News 12

News 12 Interview: Diabetes and Weight Loss

Comparison of mesenchymal stem cells from adipose tissue and bone marrow for ischemic stroke therapy


Background aims Transplantation of mesenchymal stromal cells (MSC) derived from bone marrow (BM) or adipose tissue is expected to become a cell therapy for stroke. The present study compared the therapeutic potential of adipose-derived stem cells (ASC) with that of BM-derived stem cells (BMSC) in a murine stroke model. Methods ASC and BMSC were isolated from age-matched C57BL/6J mice. These MSC were analyzed for growth kinetics and their capacity to secrete trophic factors and differentiate…

Read the Rest...

Adipose-Derived Stem Cells: Characterization and Current Application in Orthopaedic Tissue Repair


Orthopaedic tissues, such as bone, cartilage, intervertebral disc and tendon, contain cells that are difficult to culture and stimulate in vitro for repair of damaged tissue. Stem cells have the ability to self-renew and differentiate into many tissue types. Recent progress in stem cell research has led to an enthusiastic effort to utilize stem cells for orthopaedic tissue regeneration. Due to ease of harvest and abundance, adipose-derived mesenchymal cells (ASC) are an attractive, readily available…

Read the Rest...

Adipose-derived stem cell: a better stem cell than BMSC


To further study the proliferation and multi-differentiation potentials of adipose-derived stem cells (ADSCs), the cells were isolated with improved methods and their growth curves were achieved with cck-8. Surface protein expression was analyzed by flow cytometry to characterize the cell phenotype. The multi-lineage potential of ADSCs was testified by differentiating cells with adipogenic, chondrogenic, osteogenic, and myogenic inducers. The results showed that about 5 × 105 stem cells could be obtained from 400 to 600 mg adipose tissue….

Read the Rest...

Concise Review: Mesenchymal Stem Cell Treatment of the Complications of Diabetes Mellitus†‡§


Mesenchymal stem cells (MSCs) are multipotent, self-renewing cells that can be found in almost all postnatal organs and tissues. The main functional characteristics of MSCs are their immunomodulatory ability, capacity for self-renewal, and differentiation into mesodermal tissues. The ability of MSCs to differentiate into several cell types, including muscle, brain, vascular, skin, cartilage, and bone cells, makes them attractive as therapeutic agents for a number of diseases including complications of diabetes mellitus. We review here…

Read the Rest...

Human stem cell therapy in ischaemic stroke: a review


Stroke is a leading cause of death and disability. Globally, 15 million people suffer a stroke each year, of whom more than 5 million die, and a further 5 million are left permanently disabled. Current treatment options offer modest benefits, and there is a pressing need for new and effective treatments. Stem cell therapy is a well-established treatment modality for various haematological diseases, with its use now being explored in different disease processes, including various…

Read the Rest...

Neuroprotective features of mesenchymal stem cells


Bone marrow (BM) derived mesenchymal stem cells (MSC) differentiate into cells of the mesodermal lineage but also, under certain experimental circumstances, into cells of the neuronal and glial lineage. Their therapeutic translation has been significantly boosted by the demonstration that MSC display significant also anti-proliferative, anti-inflammatory and anti-apoptotic features. These properties have been exploited in the effective treatment of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis where the inhibition of the autoimmune…

Read the Rest...

Cross-talk between neural stem cells and immune cells: the key to better brain repair?


Systemic or intracerebral delivery of neural stem and progenitor cells (NSPCs) and activation of endogenous NSPCs hold much promise as potential treatments for diseases in the human CNS. Recent studies have shed new light on the interaction between the NSPCs and cells belonging to the innate and adaptive arms of the immune system. According to these studies, the immune cells can be both beneficial and detrimental for cell genesis from grafted and endogenous NSPCs in…

Read the Rest...

Human neural stem cells enhance structural plasticity and axonal transport in the ischaemic brain


Stem cell transplantation promises new hope for the treatment of stroke although significant questions remain about how the grafted cells elicit their effects. One hypothesis is that transplanted stem cells enhance endogenous repair mechanisms activated after cerebral ischaemia. Recognizing that bilateral reorganization of surviving circuits is associated with recovery after stroke, we investigated the ability of transplanted human neural progenitor cells to enhance this structural plasticity. Our results show the first evidence that human neural…

Read the Rest...

Induction of pluripotent stem cells transplantation therapy for ischemic stroke


Stroke can cause permanent neurological damage, complications, and even death. However, there is no treatment exists to restore its lost function. Human embryonic stems transplantation therapy was a novel and potential therapeutic approach for stroke. However, as we have seen, the ethical controversy pertains to embryonic stem cell research. Human induced pluripotent stem cells (iPSCs) are the latest generation of stem cells that may be a solution to the controversy of using embryonic cells. In our…

Read the Rest...

Stem cell therapy in ischemic stroke


Objective: Cell-based therapies are being investigated as an adjunct to IV thrombolysis or mechanical thrombectomy in ischemic stroke. This review summarizes the potential applications as well as challenges of intravascular cell delivery in ischemic stroke. Method: We conducted a search of Medline as well as the clinicaltrials.gov Web site for all ongoing human clinical studies using stem cells in ischemic stroke patients. Result: The pros and cons of the various donor cell types and routes…

Read the Rest...